Beobachtergestützte Steigerung der Bahngenauigkeit von Industrierobotern unter Berücksichtigung von Gelenkelastizitäten
Trotz steifer Bauweise werden Knickarmroboter bei hochdynamischen Applikationen vorrangig wegen Getriebeelastizitäten und -losen zu Schwingungen angeregt. Das führt zu stark verminderter Bahngenauigkeit. Zur regelungstechnischen Kompensation müssen diese Einflüsse abtriebsseitig messtechnisch erfasst und quantitativ analysiert werden. Die interne Robotersensorik (antriebseitiger Winkelgeber) der meisten industriellen Manipulatoren kann die reale Bahn nicht exakt abbilden. Eine Möglichkeit zur genauen messtechnischen Erfassung hochdynamischer Trajektorien stellen leistungsfähige 3D-Kameramesssysteme dar, die eine hochfrequente Abtastung der TCP-Bahn (Tool Center Point) erlauben. Zur Verbesserung der abtriebsseitigen Bahngenauigkeit von seriellen Robotern für hochdynamische Roboterbahnen wird eine kaskadierte Methodik eingesetzt. Diese besteht aus drei Teilschritten: einer kinematischen und dynamischen Modellierung und Kalibrierung, der Kompensation der nichtlinear verkoppelten Dynamik mittels modellbasierter Drehmomentvorsteuerung und der Reduktion verbleibender Bahnfehler durch iterativ lernende Verfahren auf Basis externer Kameramessungen. Dadurch entsteht ein insgesamt effektives Konzept zur automatisierten Kalibrierung und Optimierung der Genauigkeit hochdynamischer Bahnen von Industrierobotern durch eine Art automatisiertes Teach-In.